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ABSTRACT 

The Ikeda-Carpenter (I-C) function describing the shape of the pulsed-moderator emission 
time distribution fits well the simulated and observed functions in idealized, well-focused 
circumstances and for most practical moderator materials.  However, in practice, the 
calculations and observations must include broadening effects due to resolution 
(approximated in a Gaussian) or source pulse width (approximated in a top-hat function.)  I 
present modifications of the I-C function for the two cases and relate the derivation of the 
results, which may be useful in characterizing moderators and fitting diffractometer line 
shapes. 

Important exceptions in recent experience are those of para-hydrogen moderators, for which, I 
conjecture, at least two terms of similar form may be required.  A possible reason for this may 
lie in the unusual total scattering cross section of moderators with high para concentrations, 
which has a minimum in the range of energies just below 15 meV.  In contrast with the most 
common situations in which the cross section minimum lies in the epithermal range, this may 
lead to more than one thermal-neutron energy eigenfunction and time eigenvalue that is 
potentially significant in the energy range near 15 meV. 

 
 
1. Pulse shapes of pulsed-source moderators 

There is no question of the time-dependence of the neutrons emitted from a reactor 
(or any steady-source) moderator—in principle, neutrons come out in a steady stream.  
However, the time dependence of the neutrons emitted from pulsed-source moderators is 
of crucial importance, inasmuch as this determines the resolution of time-of-flight 
measurements. Consequently, the design and optimization of pulsed-source moderators 
relates closely to the requirements of instruments using the neutrons.  Neutrons, initially a 
very short pulse at high energy, spend time slowing down in the moderator and diffusing 
around within before emerging.  Neutrons emerge in a time distribution that begins at the 
time of the primary source pulse, as demanded by causality requirements.  Figure 1 shows 
the emission-time distribution of 0.063-eV neutrons from the same moderator as that of 
Fig. 1.  Times t in the expressions that follow correspond to the times that neutrons cross 
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the moderator surface in the direction of travel, adjusted for the time-of-flight to the 
detector, and are measured from the time of the primary source pulse. 

 

 

 

 

 

 

Figure 1. The emission-time distribution of 63.3-meV neutrons of a poisoned room-temperature polyethylene 
moderator at IPNS.  [1,2] 

These shapes depend greatly on the wavelength (energy) of the neutrons as well as the 
details of the moderator.  Predominant features of all pulse-source pulse shape functions are 
the very sharp rising edge and the exponential fall-off at long times.  The figure shows a 
function fitted to the time distribution, which gives an excellent description of the 
measurement.  The function, physics-motivated but basically empirical, normalized to unit 
area and called the Ikeda-Carpenter (I-C) function, [1,2], is 

f (E,t) = (1− R(E)) fSD (E,t) + R(E) fSD (E, ′t )β exp(−β(t − ′t
0

t

∫ )d ′t , (1) 

which is the sum of two terms. The first term is a “slowing-down” function 

fSD (E,t) =
a
2
at( )2 exp(−at)  with a(E) = vΣ(E) , where Σ(E)  is the macroscopic scattering 

cross section for neutrons of energy E, which is weighted by a factor (1− R(E)) .  The 
second term is a “storage” term, which represents the decay of the longest-lived 
eigenfunction of the moderator neutron distribution β exp(−βt) , a decaying exponential, 
convoluted with the slowing-down function and weighted by R(E) .  Explicitly, the function 
is 

fI −C (E,t) =
a
2

(1− R) at( )2 exp(−at) +

+2R a2β
(a − β)3

exp(−βt) − exp(−at)(1+ (a − β)t + 1
2
(a − β)2 t 2 )⎡

⎣⎢
⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 (2) 
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This result follows easily from the Laplace transform calculation of fSD (E,t) , in which the 
transform of the convolution product is the product of the transforms of the convoluted 
functions. Consult any book that tabulates Laplace transform pairs for further information.  
The Laplace transform method is appropriate here because the functions involved are 
defined on the half-range, t > 0 : 

  
f(s) ≡ L f (t)[ ] ≡ exp(−st) f (t)dt

0

∞

∫ . (3) 

Consulting a table of function-transform pairs, (now suppressing the variable E) we find 
that the transforms are 

  
f SD (s) = L

a
2
at( )2 exp(−at)⎡

⎣⎢
⎤
⎦⎥
=

a3

(s + a)3
 (4) 

and
 

  
f Storage(s) = L β exp(−βt)[ ] = β

(s + β)
, (5)

 

so that 

 
f I −C (s) = (1− R) f SD (s) + R f SD (s) f Storage(s) =

a3

(s + a)3
1− R +

βR
(s + β)

⎛
⎝⎜

⎞
⎠⎟

. (6)
 

The Laplace transform variable s is a complex number. 

The I-C function appears complicated but is not when viewed in terms of its basis.  
The function is entirely tractable as a form for non-linear least squares fitting and for 
subsequent calculation.  The parameters a,R,  β, and Σ depend on the energy E.  In concept, 
a,  β, and Σ  are independent of E but in terms of the empirical process of fitting can be 
taken as E-dependent, different for the peak for each energy. The times t within each peak 
fitted (as in Figure 1) must be interpreted as t = tobs − to , in which to is also a fitting 
parameter, which also depends on E.  Smooth, even physically reasonable, functions can 
represent the energy variation of these parameters.  This enables representing the functions 
f (E,t)over the entire range of E in terms of only a few fitting constants.  Although devised 

to fit one particular measurement, the I-C function has been found, sometimes with 
elaboration, to fit well the emission-time distributions of a wide variety of moderators.  A 
final reminder is to remember that the I-C function describes the moderator emission time 
distribution as the response to a delta-function-like source pulse, unbroadened by resolution 
effects as described in the next subsections. 

The function fI −C (E,t)  does not represent the variation of I(E,t) as an energy density 

because it is normalized to an arbitrary area both in theory ( fI −C (E,t)0

∞

∫ dt = 1) and in 
measurements, in which an overall normalizing constant is also a fitting parameter. 
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In time-of-flight applications, the time of arrival at a detector represents the speed (energy, 
wavelength) of the detected neutron, 

t = L
v
+ te . (7) 

This time represents the time measured from the mean time, as opposed to the starting time 
of the emission-time distribution, te , which for the I-C function is 

te =
3
a
+
R
β

. (8)
 

When this expression is used to determine the effective flight path length L for 
instrument wavelength calibration, say, by relating measured times of arrival for known 
wavelengths, the expression appears indeterminate.  This is avoidable if the process is 
considered as an iterative one, first determining a preliminary length and wavelength, then 
computing the emission time from the preliminary wavelength, a small correction, then 
reiterating.  The variance of the I-C function is 

σ t
2 =

(2R − R2 )
β 2 +

3
a2

. (9)
 

Although the I-C time distribution assumes a single thermal-neutron eigenfunction, there 
may be more than one and consequently more than one thermal-neutron eigenfunction 
represented in each. 

2. Broadened Ikeda-Carpenter functions 

2.1 Gaussian broadening 

When resolution effects broaden the observed function, as in scattering instrument 
resolution  applications, it is frequently the case that many broadening effects convolute 
together to approximate a Gaussian broadening function (an example of the central limit 
theorem).  To describe the measured emission time distribution then requires a broadened 
version of the I-C function.  We have worked this out [3] in relation to the resolution of a 
pulsed-source chopper spectrometer. The result is the convolution of the I-C function with 
the instrument response function (broadening function), a Gaussian function,  

fG (t) = fI −C− t

∞

∫ (t + τ )g(τ )dτ , (10) 
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where 

g(τ ) = γ
π
exp(−γ t 2 )

 
(11)

 

in which (for later simplification of the algebra, we express) γ =
1

2σ 2 (E)  and σ 2 (E)  is the 

variance of the gaussian broadening function.  Then, after somewhat arduous calculation, 
three forms arise in the Gaussian-broadened I-C function that modify the unbroadened 
function, with the result 

fG (t) =
2
a

1− R( )a2t 2 − a2βR
(a − β)3

(1+ (a − β)t + 1
2
(a − β)2 t 2 )

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩⎪

exp(−at) fo(a,γ ,t) +

+
a2βR
(a − β)3

exp(−βt) fo(β,γ ,t) +              

+ 2(1− R)a2t − a2βR
(a − β)2

1+ (a − β)t( )⎡

⎣
⎢

⎤

⎦
⎥exp(−at) f1(a,γ ,t) +  

+ (1− R)a2 − 1
2
a2βR
(a − β)

⎡

⎣
⎢

⎤

⎦
⎥exp(−at) f2 (a,γ ,t)

⎫
⎬
⎭⎪

. (12) 

The functions fo(x, y,t),  f1(x, y,t),  and f2 (x, y,t)  might be calculated by integration by 
parts, but a slicker method is that of differentiation on imbedded parameters, by which the 
higher-order functions emerge easily from the lowest order one (a defensible procedure 
because the integrand is well behaved), 

fo(x,γ ,t) = exp(−xτ )exp(−γτ 2 )
− t

∞

∫ dτ =
2
πγ
exp( x

2

4γ
)erfc( x

2 γ
− γ t) , (13) 

where  

erfc(y) = 2
π

exp(−u2
y

∞

∫ )du  (14) 

is the complementary error function and 
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derfc(y)
dy

= −
2
π
exp(−y2 ) . (15)

 

Then 

f1(x,γ ,t) = τ exp(−xτ )exp(−γτ 2 )
− t

∞

∫ dτ = −
δ
δx

fo(x,γ ,t)
 
(16)

 

and 

f2 (x,γ ,t) = τ 2 exp(−xτ )exp(−γτ 2 )
− t

∞

∫ dτ = −
δ
δγ

fo(x,γ ,t)
 
(17)

 

so that we have 

f1(x,γ ,t) =
2
πγ
exp( x

2

4γ
) exp(−γ (t − x

2 γ
)2 ) − x

2
π
γ
erfc( x

2 γ
− γ )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

(18)
 

and 

f2 (x,γ ,t) =
1

γ πγ
exp( x

2

4γ
) ×  

× 1+ x2

2γ
⎛
⎝⎜

⎞
⎠⎟
erfc( x

2 γ
− t γ ) − 2

π
x
2 γ

+ t γ
⎛

⎝⎜
⎞

⎠⎟
exp(−( x

2 γ
− t γ )2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (19) 

Laplace transform methods are inappropriate here because the Gaussian function is finite 
(though small at the extremes) on the full range −∞ < t < ∞  rather than the finite range 
0 < t < ∞  required in the Laplace transform. (The resolution broadening function is 
actually non-zero in a finite range, and the Gaussian approximation is good only around 
the maximum point.) The results are similar to those derived for the resolution of pulsed-
source chopper spectrometers in [3].  For some reason, the integrals involved are not 
explicitly found in standard handbooks, however, consult Ref. [4]. 

In application the time t  usually is offset by a delay time, t→ t − to .  If parameters 
of the Gaussian-broadened I-C function are to be fitted to data, then a,  β, to,  γ and a 
normalization factor are the only adjustable parameters.  Because the Gaussian is a 
symmetric function of t , the mean value of the Gaussian-broadened I-C function is the 
same as before, 
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te =

3
a
+
R
β

, (20) 

and, because the variance of the Gaussian is Gaussian
2  and variances of convoluted 

distributions add, the variance of the Gaussian-broadened I-C function is 

σGaussian  broadened  I-C
2 =

3
a2 +

2R − R2( )
β 2 +σGaussian

2 , (21) 

 in which all variables are functions of the energy, E. 

2.2 Long-pulse source broadening 

When the source pulse is extended in time, as in long-pulse sources, the finite 
duration of the source pulse broadens the emission time distribution from its form for a 
delta function source pulse.  Representing the source pulse as a step function (Heaviside 
function) time distribution, 

H (t) =
1
T

 for 0 < t < T  and

0 for t > T

⎧
⎨
⎪

⎩⎪
, (22) 

the broadened I-C function is 

fH (t) = fI −C0

t

∫ (t − τ )H (τ )dτ =
1
T

fI −Cτmin

t

∫ (t − τ )dτ  (23) 

whereτmin = Max(0,t − T ) . Explicitly, collecting terms of equal order in τ , we have 

fH (t) =
2
aT

1− R( )a2 − Raβ 2

a − β( )
⎡

⎣
⎢

⎤

⎦
⎥τ

2 exp(−aτ ) − 2Raβ 2

a − β( )2
τ exp −aτ( ) +

+
2Raβ 2

a − β( )3
exp −βτ( ) − exp −aτ( )( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

τmin

t

∫ dτ  (24) 
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Defining functions ho, h1, and h2, which are standard integrals found in the handbooks,

 

ho(x,t) = x exp(−xτ )dτ = exp(−xτmin ) −τmin

t

∫ exp(−xt) , (25)
 

h1(x,t) = x
2 τ exp(−xτ )dτ = xτmin +1( )exp(−xτmin )τmin

t

∫ − xt +1( )exp(−xt) , (26) 

and
 

h2 (x,t) = x
3 τ 2 exp(−xτ )dτ

τmin

t

∫ =
 

= (x2τmin
2 + 2xτmin + 2)exp(−xτmin ) − (x

2t 2 + 2xt + 2)exp(−xt) , (27) 

we finally have 

fH (t) =
a
2T

1− R( )a2 − Raβ 2

a − β( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
h2 (a,t)
a2

−

−
2Raβ 2

a − β( )2
h1(a,t)
a

+
2Raβ 2

a − β( )
ho(a,t)
a

−
h1(β,t)

β
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 (28) 

Recall that τmin = Max(0,t − T )
 , so that there are three regimes: 

0 < t < T , whereτmin = 0 ; (29) 

t > T , whereτmin = t − T ; (30) 

and  

t < 0 , where fH (t) = 0 , (31) 

as it must be because nothing has happened yet for those times. 

The mean emission time is 

te =
3
a
+
R
β
+
T
2

, (32) 

and the variance of the emission time distribution is
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σ H −broadened
2 =

3
a2

+
2R − R2( )

β 2 +
T 2

12
, (33) 

which results follow because the functions are convolutions of the I-C function and the 
broadening function. 

   
 

These results will be useful for fitting measured and calculated data and for 
instrument design simulations.  The broaden functions are complicated but explicit, 
moreover, they introduce only one new parameter into the least-squares scheme, so that, 
once programmed, there should be no great troubles in view of the great speed  of modern 
computers. Readers interested to derive broadened I-C functions for other forms of 
sectionally continuous broadening may find useful the very general function-transform pair 
for rational functions (ratios of polynomials in the transform variable) found, for example, 
in Ref. [5].  

An obvious, needed extension of the present work is to derive expressions for the 
broadened pulse shape including both gaussian and top-hat broadening in the same form. 

3. Conjecture 

Important exceptions in recent experience to the single-pulse-shape description for 
each energy are those of para-hydrogen moderators, for which, I conjecture, at least two 
terms of similar form may be required.  A possible reason for this may lie in the unusual 
total scattering cross section of moderators with high para concentrations, which has a 
minimum in the range of energies just below 15 meV.  In contrast with the most common 
situations in which the cross section minimum lies in the epithermal range, this may lead to 
more than one thermal-neutron energy eigenfunction and time eigenvalue that is 
potentially significant in the energy range near 15 meV. 
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